Abstract

Multiple approaches are required to study the evolution of black-hole binaries. While the post-Newtonian (PN) approximation is sufficient to describe the early inspiral (even from infinitely large orbital separation), only numerical relativity can capture the full complexity of the dynamics near merger. We combine multi-timescale PN integrations with numerical-relativity surrogate models, thus mapping the entire history of the binary from its asymptotic configuration at past-time infinity to the post-merger remnant. This approach naturally allows us to assess the impact of the precessional and orbital phase on the properties—mass, spin, and kick—of the merger remnant. These phases introduce a fundamental uncertainty when connecting the two extrema of the binary evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.