Abstract

Colorectal cancer (CRC) has a complex etiology resulting from the combination of multiple genetic and environmental factors, each with small effects. Interactions among susceptibility modifier loci make many of the loci difficult to detect in human genome-wide association studies. Previous analyses in mice have used classical inbred strains, which share large portions of their genomes due to common ancestry. Herein, we used an interspecific backcross between the Mus musculus strain A/J and the Mus spretus strain SPRET/EiJ to map 6 additional CRC modifier loci (Scc16-21) and 2 suggestive loci. Three loci modify the location of tumors along the proximal-distal axis of the colon. Six CRC modifiers previously mapped in intraspecific crosses were also replicated. This work confirms genetic models suggesting that CRC is caused by many small effect alleles and brings the catalog of reported CRC modifier loci to 23 spread across 13 chromosomes. Furthermore, this work provides the foundation for large population-level epistatic interaction tests to identify combinations of low effect alleles that may have large effects on CRC susceptibility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.