Abstract

AbstractQuaternary alluvial fans have diverse surface morphologies related to both depositional and weathering processes. Numerous studies have demonstrated that the surface expression and morphometry of alluvial fans can be used as an indicator of their relative age of deposition, but only recently has there been an effort to utilize high‐resolution topographic data to differentiate alluvial fans by surface age with automated and quantifiable routines. We developed a quantitative model for mapping the relative age of alluvial fan surfaces based on multiparameter surface roughness values computed from 1 m resolution lidar topographic data. Roughness is defined as a function of observational scale and integration of slope, curvature, and aspect topographic parameters. Alluvial fan roughness values were computed across multiple observation scales (3 × 3 m to 150 × 150 m) based on the standard deviation (SD) of slope, curvature (tangential), and aspect topographic parameters. Plots of roughness value versus size of observation scale suggest that the SD of each parameter over a 7 × 7 m observation window best identified the signature of surface roughness elements. Roughness maps derived from slope, curvature, and aspect at this scale were integrated using fuzzy logic. The integrated roughness map was then classified into five relative morphostratigraphic surface age categories (active wash to ~400 ka) and statistically compared with a similar fivefold surface age map of alluvial fans developed using traditional field surveys and aerial photographic interpretation. The model correctly predicted the distribution and relative surface age of ~61% of alluvial fan landforms based on traditional mapping techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.