Abstract

BackgroundTartary buckwheat (Fagopyrum tataricum), an important pseudocereal crop, has high economic value due to its nutritional and medicinal properties. However, dehulling of Tartary buckwheat is difficult owing to its thick and tough hull, which has greatly limited the development of the Tartary buckwheat processing industry. The construction of high-resolution genetic maps serves as a basis for identifying quantitative trait loci (QTLs) and qualitative trait genes for agronomic traits. In this study, a recombinant inbred lines (XJ-RILs) population derived from a cross between the easily dehulled Rice-Tartary type and Tartary buckwheat type was genotyped using restriction site-associated DNA (RAD) sequencing to construct a high-density SNP genetic map. Furthermore, QTLs for 1000-grain weight (TGW) and genes controlling hull type were mapped in multiple environments.ResultsIn total, 4151 bin markers comprising 122,185 SNPs were used to construct the genetic linkage map. The map consisted of 8 linkage groups and covered 1444.15 cM, with an average distance of 0.35 cM between adjacent bin markers. Nine QTLs for TGW were detected and distributed on four loci on chromosome 1 and 4. A major locus detected in all three trials was mapped in 38.2–39.8 cM region on chromosome 1, with an LOD score of 18.1–37.0, and explained for 23.6–47.5% of the phenotypic variation. The genes controlling hull type were mapped to chromosome 1 between marker Block330 and Block331, which was closely followed by the major locus for TGW. The expression levels of the seven candidate genes controlling hull type present in the region between Block330 and Block336 was low during grain development, and no significant difference was observed between the parental lines. Six non-synonymous coding SNPs were found between the two parents in the region.ConclusionsWe constructed a high-density SNP genetic map for the first time in Tartary buckwheat. The mapped major loci controlling TGW and hull type will be valuable for gene cloning and revealing the mechanism underlying grain development and easy dehulling, and marker-assisted selection in Tartary buckwheat.

Highlights

  • Tartary buckwheat (Fagopyrum tataricum), an important pseudocereal crop, has high economic value due to its nutritional and medicinal properties

  • We used a recombinant inbred lines (XJ-Recombinant inbred line (RIL)) population derived from a cross between an dehulled Rice-Tartary variety and a Tartary buckwheat variety to construct a high-density linkage map using Singlenucleotide polymorphism (SNP) markers generated by restriction site-associated DNA (RAD) sequencing

  • SNP genotyping based on RAD sequencing To construct the high-density linkage map, the XJ-RILs population derived from a cross between Rice-Tartary variety “Xiaomiqiao” and Tartary buckwheat variety “Jinqiaomai 2” along with the parents was re-sequenced by an Illumina HiSeq2500 platform

Read more

Summary

Introduction

Tartary buckwheat (Fagopyrum tataricum), an important pseudocereal crop, has high economic value due to its nutritional and medicinal properties. Dehulling of Tartary buckwheat is difficult owing to its thick and tough hull, which has greatly limited the development of the Tartary buckwheat processing industry. Despite its lower 1000-grain weight (TGW), Tartary buckwheat grains have higher levels of total flavonoids [3,4,5], crude fibre, minerals (K, Mg, Zn, Cu and Mn) [6, 7], vitamins (B1, B2, and B6) [8, 9], high-quality protein [8, 10] and antioxidant capacity [4, 11] in comparison with common buckwheat. Almost all Tartary buckwheat grains are extremely difficult to dehull owing to their thick and adherent hull with three grooves, which greatly limits the development of the Tartary buckwheat processing industry. Developing Tartary buckwheat varieties with easy dehulling is regarded as the key to solving this problem

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.