Abstract

In Si/SiGe heterostructures, the low-lying excited valley state seriously limits the operability and scalability of electron spin qubits. For characterizing and understanding the local variations in valley splitting, fast probing methods with high spatial and energy resolution are lacking. Leveraging the spatial control granted by conveyor-mode spin-coherent electron shuttling, we introduce a method for two-dimensional mapping of the local valley splitting by detecting magnetic field-dependent anticrossings of ground and excited valley states using entangled electron spin-pairs as a probe. The method has sub-μeV energy accuracy and a nanometer lateral resolution. The histogram of valley splittings spanning a large area of 210 nm by 18 nm matches well with statistics obtained by the established but time-consuming magnetospectroscopy method. For the specific heterostructure, we find a nearly Gaussian distribution of valley splittings and a correlation length similar to the quantum dot size. Our mapping method may become a valuable tool for engineering Si/SiGe heterostructures for scalable quantum computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.