Abstract

Ternary diffusion behavior in Co-Al-V ternary alloys was investigated at 1373 K and 1473 K (1100 °C and 1200 °C) by the solid-state diffusion-couple technique. The extraction and interpolation of diffusion data allows the diffusion properties of Fcc Co-Al-V alloys to be mapped in the composition arrays of Al and V. A full picture of the diffusion properties was then constructed by interpolating all accessible interdiffusivities and impurity diffusivities of Co-Al binary and Co-Al-V ternary with a Redlich–Kister polynomial, in a graphic manner depicting a rapid increase of Al diffusion with increasing Al and a weak decrease with the V addition alone. Further incorporation of a nanoindentation technique enables the nanohardness property of the Co-Al-V fcc alloys to be screened in the Al and V arrays. The hardenability in the Co-Al-V alloy system has been evidenced; specifically, the alloy arrays containing higher contents of V, being solution-and-quenching processed, exhibit more effective strengthening than those with the addition of Al. The discovery of Co-Al-V alloys with comparable nanohardness but differing alloy compositions could facilitate the strengthening design of next generation Co-based alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.