Abstract
Knowledge of the spatial patterns of successional stages (i.e., primary and secondary forest) in tropical forests allows to monitor forest preservation, mortality and regeneration in relation to natural and anthropogenic disturbances. Different successional stages have also different capabilities of re-establishing carbon stocks. Therefore, a successful discrimination of successional stages over wide areas can lead to an improved quantification of above ground biomass and carbon stocks. The reduction of the mapping uncertainties is especially a challenge due to high heterogeneity of the tropical vegetation. In this framework, the development of innovative remote sensing approaches is required. Forests (top) height (and its spatial distribution) are an important structural parameter that can be used to differentiate between different successional stages, and can be provided by Interferometric Synthetic Aperture Radar (InSAR) acquisitions. In this context, this paper investigates the potential of forest heights estimated from TanDEM-X InSAR data and a LiDAR digital terrain model (DTM) for separating successional stages (primary or old growth and secondary forest at different stages of succession) by means of a maximum likelihood classification. The study was carried out in the region of the Tapajós National Forest (Pará, Brazil) in the Amazon biome. The forest heights for three years (2012, 2013 and 2016) were estimated from a single-polarization in bistatic mode using InSAR model-based inversion techniques aided by the LiDAR digital terrain model. The validation of the TanDEM-X forest heights with independent LiDAR H100 datasets was carried out in the location of seven field inventory plots (measuring 50 × 50 m, equivalent to 0.25 ha), also allowing for the validation of the LiDAR datasets against the field data. The validation of the estimated heights showed a high correlation (r = 0.93) and a low uncertainty (RMSE = 3 m). The information about the successional stages and forest heights from field datasets was used to select training samples in the LiDAR and TanDEM-X forest heights to classify successional stages with a maximum likelihood classifier. The identification of different stages of forest succession based on TanDEM-X forest heights was possible with an overall accuracy of about 80%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.