Abstract

Cartography is the art of map‐making that integrates science, technology, and visual aesthetics for the purpose of rendering the domain of interest, navigable. The science could aid the cartographer if it were to inform about the underlying process. Thus, Mendeleev's periodic table was informed by insights about the atomic mass periodicity. Likewise, Harvey's work on the circulatory system map was informed by his theoretical insights on Galen's errors. Mapping of human knowledge dates back at least to Porphyry who laid out the first tree‐of‐knowledge. Modern knowledge‐cartographers use a wide array of scientometric techniques capable of rendering appealing visuals of massive scientific corpuses. But what has perhaps been lacking is a sound theoretical basis for rendering legible the adaptive dynamics of knowledge creation and accumulation. Proposed is a theoretical framework, knowledge as a complex adaptive system (CAS) patterned on Holland's work on CAS, as well as the view that knowledge is a hierarchically heterarchic dynamical system. As a first leg in the conjoining experimental phase, we extract terms from approximately 1400 complexity science papers published at the Santa Fe Institute, deduce the topic distribution using Latent Dirichlet Allocation, capture the underlying dynamics, and show how to navigate the corpus visually. © 2016 Wiley Periodicals, Inc. Complexity 21: 207–234, 2016

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.