Abstract

In Arabidopsis, two genes of abscisic acid (ABA) 8′-hydroxylase (cytochrome P450 (CYP) 707A1 and A2) have been found to play important roles in seed dormancy through the regulation of ABA content in seeds. In order to examine the role of wheat ABA 8′-hydroxylase gene in seed dormancy, a diploid wheat ABA 8′-hydroxylase gene was cloned that showed high similarity to a barley ABA8′-hydroxylase gene (HvABA8′OH-2), and the cloned gene was designated as TmABA8′OH-2. Using recombinant inbred lines derived from a cross between diploid wheat Triticum boeoticum L. (Tb) and Triticum monococcum L. (Tm), TmABA8′OH-2 has been mapped to near the centromeric region of the long arm of chromosome 5Am, where the major seed dormancy QTL has been previously found. Comparison of the deduced amino acid sequences of TmABA8′OH-2 between Tb and Tm revealed five amino acid residue substitutions. These amino acid residues have distinctly different characteristics, and one of the substitutions occurs in the highly conserved amino acid residues in CYP707A family, indicating that these substitutions may have effects on the enzyme activities. Moreover, hexaploid wheat TmABA8′OH-2 homologue revealed that the level of its expression during seed development peaks at mid-maturation stage. This resembles the expression pattern of the Arabidopsis CYP707A1, which was shown to control seed dormancy. These results imply a possibility that TmABA8′OH-2 might be involved in seed dormancy, and associated with the QTL on chromosome 5Am.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.