Abstract

Efficient numerical solver for the Schrödinger equation is very important in physics and chemistry. The finite element discrete variable representation (FE-DVR) was first proposed by Rescigno and Mc-Curdy [Phys. Rev. A 62, 032706 (2000)] for solving quantum-mechanical scattering problems. In this work, an FE-DVR method in a mapped coordinate was proposed to improve the efficiency of the original FE-DVR method. For numerical demonstration, the proposed approach is applied for solving the electronic eigenfunctions and eigenvalues of the hydrogen atom and vibrational states of the electronic state 3Σg+ of the Cs2 molecule which has long-range interaction potential. The numerical results indicate that the numerical efficiency of the original FE-DVR has been improved much using our proposed mapped coordinate scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.