Abstract

The MAP kinase high osmolarity glycerol 1 (Hog1) plays a central role in responding to external oxidative stress in budding yeast Saccchromyces cerevisiae. However, the downstream responsive elements regulated by Hog1 remain poorly understood. In this study, we report that a Sporisorium scitamineum orthologue of Hog1, named as SsHog1, induced transcriptional expression of a putative cytochrome P450 oxidoreductase encoding gene SsCPR1, to antagonize oxidative stress. We found that upon exposure to hydrogen peroxide (H2 O2 ), SsHog1 underwent strikingly phosphorylation, which was proved to be critical for transcriptional induction of SsCPR1. Loss of SsCPR1 led to hypersensitive to oxidative stress similar as the sshog1Δ mutant did, but was resistant to osmotic stress, which is different from the sshog1Δ mutant. On the other hand, overexpression of SsCPR1 in the sshog1Δ mutant could partially restore its ability of oxidative stress tolerance, which indicated that the Hog1 MAP kinase regulates the oxidative stress response specifically through cytochrome P450 (SsCpr1) pathway. Overall, our findings highlight a novel MAPK signalling pathway mediated by Hog1 in regulation of the oxidative stress response via the cytochrome P450 system, which plays an important role in host-fungus interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.