Abstract

We consider disordered many-body systems with periodic time-dependent Hamiltonians in one spatial dimension. By studying the properties of the Floquet eigenstates, we identify two distinct phases: (i)a many-body localized (MBL) phase, in which almost all eigenstates have area-law entanglement entropy, and the eigenstate thermalization hypothesis (ETH) is violated, and (ii)a delocalized phase, in which eigenstates have volume-law entanglement and obey the ETH. The MBL phase exhibits logarithmic in time growth of entanglement entropy when the system is initially prepared in a product state, which distinguishes it from the delocalized phase. We propose an effective model of the MBL phase in terms of an extensive number of emergent local integrals of motion, which naturally explains the spectral and dynamical properties of this phase. Numerical data, obtained by exact diagonalization and time-evolving block decimation methods, suggest a direct transition between the two phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.