Abstract
Double quantum dots (DQDs) systems may be the minimal setups for realization of QD-based qubits and quantum computation. Pauli spin blockade (PSB) and a kind of novel many-body tunneling (MBT) are identified to play important roles in these systems, and dominate the quantum tunneling at moderate and weak interdot coupling t, respectively. On the other hand, inter-dot Coulomb interaction U′ and related inter-dot Coulomb blockade (IDCB) is inevitable in DQDs. However, what would happen on the effect of U′ in DQDs has not been touched, in particular for PSB and MBT. Here, we study the tunneling processes and transport properties with various U′ in series-coupled DQDs, and find MBT process is rather robust against U′ within U′/U < 0.1, where U is the intra-dot Coulomb interaction. Meanwhile, the linearity relationship between the carrier doublon number and MBT current remains valid. These findings enrich the understanding of the many-body tunneling in the DQDs and may shed light on the manipulation of the QD-based qubits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.