Abstract

We study some many-body properties of a disordered charged Bose gas (CBG) superlattice—an infinite array of CBG layers each of which containing disorder. The latter is assumed to cause collisions with the charged bosons, the effect of collisions being taken into account through a number-conserving relaxation time approximation incorporated within the random phase approximation (RPA) at T= 0. We go beyond the RPA and include a local-field correction G(q, qz) which is assumed to be collision independent, as an approximation. The resulting density–density correlation function is then used to calculate a number of many-body quantities of physical interest, e.g. (a) collective modes, (b) static structure factor, (c) energy-loss function, (d) plasmon density of states, and (e) ground-state energy. The effects of collisions on these quantities are discussed, and the results are compared with the corresponding results for an electron gas superlattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.