Abstract
Among the major interests in powertrain development are the reduction of frictional losses and service life extension from improved wear resistance. Surface finishing and deterministic microstructuring have been shown to be effective methods in improving the tribological properties of sliding contacts such as bearings and cylinder liners. This is due to their acting as micro pressure-chambers and as wear debris traps. In this work, tribometric ring-on-disc tests were performed in order to evaluate the influence of surface structure − namely, the microstructure geometry and layout − on the frictional behavior of lubricated surfaces. The material combination bronze against steel as typically used in powertrain applications was investigated. The surface structures where machined using electrochemical machining by closed electrolytic free jet (Jet-ECM). It was determined that microstructuring reduced the friction coefficient by up to 45 % in the hydrodynamic regime under loads and speeds found in automotive components. The friction measurements showed that microstructures with low aspect ratios result in the least friction. In addition to the tribological investigations, the process capabilities and implementability in serial production of two surface microstructure fabrication processes: Jet-ECM and a newly developed, hybrid roller micro-embossing and burnishing process were evaluated and contrasted. It was shown that both fabrication methods can attain high structure quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.