Abstract
The strengthening of biomedical metallic materials is crucial to increasing component durability in biomedical applications. In this study, we employ cold swaging as a strengthening method for Ni-free Co–Cr–Mo alloy rods and examine its effect on the resultant microstructures and mechanical properties. N is added to the alloy to improve the cold deformability, and a maximum reduction in area (r) of 42.6% is successfully obtained via cold swaging. The rod strength and ductility increase and decrease, respectively, with increasing cold-swaging reduction r. Further, the 0.2% proof stress at r=42.6% eventually reaches 1900MPa, which is superior to that obtained for the other strengthening methods proposed to date. Such significant strengthening resulting from the cold-swaging process may be derived from extremely large work hardening due to a strain-induced γ (fcc)→ε (hcp) martensitic transformation, with the resultant intersecting ε-martensite plates causing local strain accumulation at the interfaces. The lattice defects (dislocations/stacking faults) inside the ε phase also likely contribute to the overall strength. However, excessive application of strain during the cold-swaging process results in a severe loss in ductility. The feasibility of cold swaging for the manufacture of high-strength Co–Cr–Mo alloy rods is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.