Abstract
The manufacturing of the Si 3N 4 reinforced biomorphic microcellular SiC composites for potential medical implants for bone substitutions with good biocompatibility and physicochemical properties was performed in a two step process. First, wood-derived porous Si/SiC ceramics with various porosities were produced by liquid silicon infiltration (LSI) at 1550 °C with static nitrogen atmosphere protection (0.1 MPa), followed by subsequent partial removing of the Si in vacuo at 1700 °C for different periods of time. Secondly, the final porous Si 3N 4 fiber/SiC composite was obtained by further chemical reaction of nitrogen with the infiltrated residual silicon at 1400 °C for 4 h under high concentration flowing nitrogen atmospheres (0.5 MPa). The bending strengths of the porous Si 3N 4 fiber/SiC composite at axial and radial direction were measured as 180.03 MPa and 90 MPa respectively. The improvement in bending strength was primarily attributed to grain pull-out and bridging enhanced by the elongated β-Si 3N 4 grains cross-linked in the depth of the pore channels. The TG analysis showed an obvious improvement in oxidation resistance of the nitride specimens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.