Abstract

Over the past decades, there have been hot debates in the geodynamic community regarding to the deep evolution mechanisms of Cenozoic volcanism in the Central Asian Orogenic Belt (CAOB). Of all the constraints available, high resolution structure of upper mantle discontinuities, especially the discontinuities at depths of 410 km (D410) and 660 km (D660), is of the most important, which may provide reliable clues on the magma channel as well as its evolution. In this work, we adopt the common conversion point stacking technique with teleseismic radial P-wave receiver functions to examine the D410 and D660 discontinuities. The primary results exhibit that the major characteristics of the mantle transition zone (MTZ) obtained by different velocity models are largely consistent. Obviously elevated D410 and slightly depressed D660 are observed beneath the Hannuoba Volcano, suggesting possible delamination of the local lithosphere deposited at the D410. This process may induce upwelling of the asthenospheric materials filling the space left by the delaminated lithosphere, and subsequently trigger volcanic eruptions. Strong depressions are observed at both D410 and D660 depths beneath west of the Dariganga Volcano, and the depression of D660 is more pronounced. It leads to the apparently thickened MTZ, indicating the presence of cold material at the D660. This cold material is speculated as a stagnant slab from the subducted Pacific Plate or the remains of a detached island arc system from the collision and formation of the CAOB. Slightly thinner MTZ is found beneath the Hentey Mountains and the Middle Gobi Volcano. Apparently, this thinner MTZ is not significant enough to support the existence of high thermal anomalies, which may rule out the possibility of large-scale hot material upwelling from either the local MTZ or even the lower mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.