Abstract

Depolarization of sub-mum-high Si nano-pillar/nano-rod surface reflectance with morphologically controlled anti-reflection spectrum is demonstrated. Extremely small reflectance dip of 1.5% at 400-450 nm for Si nano-pillars is extraordinary when comparing with Si nano-rods, in which the reflectance vs. L/lambda for Si nano-pillars coincides well with the graded-index multilayer based modeling spectrum. Alternatively, Si nano-rods preserve its flattened reflectance spectrum up to 1700 nm, whereas the Si nano-pillar surface reflectance monotonically increases to approach that of bulk Si. The destructive interference is only induced on Si nano-pillar surface with larger aspect-ratio > or =15 and small sidewall slope <7 to suppress surface reflectance at blue-green wavelength region. Anomalous depolarization observed from disordered Si nano-pillar/nano-rod surface reflection indicates that TM-mode incidence interacts with more bound electrons than TE-mode to preserve its effective dielectric permittivity less deviated from the bulk Si. The degraded depolarization ratio observed under TE-mode incidence which correlates well with a simplified bounded-electron resonance model is elucidated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.