Abstract
Guanosine monophosphate, the precursor for riboflavin biosynthesis, can be converted to or generated from other purine compounds in purine metabolic networks. In this study, genes in these networks were manipulated in a riboflavin producer, Bacillus subtilis R, to test their contribution to riboflavin biosynthesis. Knocking out adenine phosphoribosyltransferase (apt), xanthine phosphoribosyltransferase (xpt), and adenine deaminase (adeC) increased the riboflavin production by 14.02, 6.78, and 41.50%, respectively, while other deletions in the salvage pathway, interconversion pathway, and nucleoside decomposition genes have no positive effects. The enhancement of riboflavin production in apt and adeC deletion mutants is dependent on the purine biosynthesis regulator PurR. Repression of ribonucleotide reductases (RNRs) led to a 13.12% increase of riboflavin production, which also increased in two RNR regulator mutants PerR and NrdR by 37.52 and 8.09%, respectively. The generation of deoxyribonucleoside competed for precursors with riboflavin biosynthesis, while other pathways do not contribute to the supply of precursors; nevertheless, they have regulatory effects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.