Abstract
Controlling magnetism using voltage is highly desired for applications, but remains challenging due to a fundamental contradiction between polarity and magnetism. Here, we propose a mechanism to manipulate magnetic domain walls in ferrimagnetic or ferromagnetic multiferroics using the electric field. Different from those studies based on static domain-level couplings, here the magnetoelectric coupling relies on the collaborative spin dynamics around domain walls. Accompanying the reversal of spin chirality driven by polarization switching, a "rolling-downhill"-like motion of the domain wall is achieved in nanoscale, which tunes the magnetization locally. Our mechanism opens an alternative route to the pursuit of practical and fast converse magnetoelectric functions via spin dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.