Abstract

We investigate experimentally and theoretically optical trapping of metal nanoparticles and aggregates. In particular, we show how light forces can be used to trap individual gold nanoaggregates of controlled size and structure obtained by laser ablation synthesis in solution. Due to their surface charge, no agglomeration of isolated nanoparticles was observed during trapping experiments and reliable optical force measurements of isolated and aggregated nanoparticles was possible through an analysis of the Brownian motion in the trap. We show how the field-enhancement properties of these nanostructures enables surface-enhanced Raman spectroscopy of molecules adsorbed on aggregates optically trapped in a Raman tweezers setup. We finally discuss calculations of extinction and optical forces based on a full electromagnetic scattering theory for aggregated gold nanostructures where the occurrence of plasmon resonances at longer wavelength play a crucial role in the enhancement of the trapping forces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.