Abstract

Designing Pt-skin on the catalyst surface is critical to developing efficient and stable electrocatalysts toward oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this paper, an acidic reductant is proposed to synchronously manipulate in-situ growth of Pt-skin on the surface of alloyed Pt-Cu nanospheres (PtCuNSs) by a facile one-pot synthesis in an aqueous solution. Ascorbic acid can create a Pt-skin of three atomic layers to make the typical PtCu-alloy@Pt-skin core/shell nanostructure rather than the uniform alloys generated by using alkaline reductants. Surfactant as soft-template can make the alloyed PtCuNSs with a three-dimensional porous network structure. Multiple characterizations of XRD, XPS and XAFS are used to confirm Pt-alloying with Cu and formation of core/shell structure of such a catalyst. This PtCuNSs/C exhibits a half-wave potential of 0.913 V (vs. RHE), with mass activity and specific activity about 3.5 and 6.4 times higher than those of Pt/C, respectively. Fuel cell tests verify the excellent activity of PtCuNSs/C catalyst with a maximum power density of about 1.2 W cm−2. Moreover, this catalyst shows excellent stability, achieving a long-term operation of 40,000 cycles. Furthermore, theoretical calculations reveal the enhancement effect of characteristic PtCu-alloy@Pt-skin nanostructure on both catalytic ORR activity and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.