Abstract
AimsBrown adipose tissue (BAT) can produce heat by metabolizing glucose and fatty acids. Activation of BAT is controlled by the central nervous system (CNS) through sympathetic innervation. Dysregulation of signalling molecules in selective CNS areas such as the nucleus of tractus solitarius (NTS) are linked with altered BAT activity, obesity and diabetes. High-fat diet (HFD)-feeding increases mitochondrial fragmentation in the NTS, triggering insulin resistance, hyperphagia and weight gain. Here we sought to determine whether changes in mitochondrial dynamics in the NTS can affect BAT glucose uptake. Main methodsRats received DVC stereotactic surgery for local brain administration of viruses that express mutated Drp1 genes. BAT glucose uptake was measured with PET/CT scans. Biochemical assays and immunohistochemistry determined altered levels of key signalling molecules and neural innervation of BAT. Key findingsWe show that short-term HFD-feeding decreases BAT glucose uptake. However, inhibiting mitochondrial fragmentation in NTS-astrocytes of HFD-fed rats partially restores BAT glucose uptake accompanied by lower blood glucose and insulin levels. Tyrosine Hydroxylase (TH) revealed that rats with inhibited mitochondrial fragmentation in NTS astrocytes had higher levels of catecholaminergic innervation in BAT compared to HFD-fed rats, and did not exhibit HFD-dependent infiltration of enlarged white fat droplets in the BAT. In regular chow-fed rats, increasing mitochondrial fragmentation in the NTS-astrocytes reduced BAT glucose uptake, TH immune-positive boutons and β3-adrenergic receptor levels. SignificanceOur data suggest that targeting mitochondrial dynamics in the NTS-astrocytes could be a beneficial strategy to increase glucose utilization and protect from developing obesity and diabetes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.