Abstract
Diazonium salts preferentially react with metallic single-walled carbon nanotubes (SWNT) over semiconducting SWNT, enabling the separation of SWNT by electronic type. Therefore, the reaction selectivity of diazonium salts for metallic SWNT is crucial for high purity separation of both metallic and semiconducting SWNT. Herein, we developed an efficient method of increasing the reaction selectivity by manipulating the redox potential of diazonium salts. The electron affinity of diazonium salts is effectively lowered when the para-substituent of the diazonium salts is an electron-donating group, (i.e., 4-hydroxy and 4-propargyloxy) rather than an electron-withdrawing group (i.e., 4-nitro, 4-carboxy, and 4-cholro). The reduction potential of 4-hydroxyphenyl and 4-propargyloxyphenyl diazonium salt was greater than the oxidation potential of semiconducting SWNT; therefore, the electron transfer reaction between these two reagents was effectively suppressed, leading to a highly selective reaction for metallic SWNT. We confirmed that this highly selective reaction scheme can be used to separate SWNT, and high purity semiconducting SWNT can be obtained via density-induced separation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.