Abstract

Amyotrophic lateral sclerosis (ALS) is an inexorably progressive neurodegenerative condition with no effective disease-modifying therapy at present. Given the striking clinical heterogeneity of the condition, the development and validation of reliable prognostic models is a recognised research priority. We present a prognostic model for functional decline in ALS where outcome uncertainty is taken into account. Patient data were reduced and projected onto a 2D space using Uniform Manifold Approximation and Projection (UMAP), a novel non-linear dimension reduction technique. Information from 3756 patients was included. Development data were sourced from past clinical trials. Real-world population data were used as validation data. Predictors included age, gender, region of onset, symptom duration, weight at baseline, functional impairment, and estimated rate of functional loss. UMAP projection of patients showed an informative 2D data distribution. As limited data availability precluded complex model designs, the projection was divided into three zones defined by a functional impairment range probability. Zone membership allowed individual patient prediction. Patients belonging to the first zone had a probability of [Formula: see text] (± [Formula: see text]) to have an ALSFRS score over 20 at 1-year follow-up. Patients within the second zone had a probability of [Formula: see text] (± [Formula: see text]) to have an ALSFRS score between 10 and 30 at 1year follow-up. Finally, patients within the third zone had a probability of [Formula: see text] (± [Formula: see text]) to have an ALSFRS score lower than 20 at 1year follow-up. This approach requires a limited set of features, is easily updated, improves with additional patient data, and accounts for results uncertainty. This method could therefore be used in a clinical setting for patient stratification and outcome projection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.