Abstract
Local, manifestly dual-conformally invariant loop integrands are now known for all finite quantities associated with observables in planar, maximally supersymmetric Yang-Mills theory through three loops. These representations, however, are not infrared-finite term by term and therefore require regularization; and even using a regulator consistent with dual-conformal invariance, ordinary methods of loop integration would naïvely obscure this symmetry. In this work, we show how any planar loop integral through at least two loops can be systematically regulated and evaluated directly in terms of strictly finite, manifestly dual-conformal Feynman-parameter integrals. We apply these methods to the case of the two-loop ratio and remainder functions for six particles, reproducing the known results in terms of individually regulated local loop integrals, and we comment on some of the novelties that arise for this regularization scheme not previously seen at one loop.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.