Abstract
Abstract. The solar cycle variation of the most important parameters characterizing the ion composition in the topside ionosphere is studied. For this purpose data from the ACTIVE mission (the IK-24 satellite) for the maximum of solar cycle 22 (aver F10.7~200), complemented by data available from the Atmosphere Explorer (AE) satellites, for the minimum of solar cycle 21 (average F10.7~85), were processed. OGO-6 data from the low maximum of solar cycle 20 (average F10.7~150) were used for medium solar activity conditions. The results for the equinox from the recently developed empirical model of ion composition are analyzed and presented, and typical vertical profiles from solar maxima and minima are shown. It was found that the logarithm of the O+, H+, He+, and N+ densities in the topside ionosphere at a fixed altitude, latitude, and local time is, in the first approximation, a linear function of solar activity characterized by the daily F10.7. On the other hand, the upper transition height is generally a non linear function of the daily F10.7, the deviation from linear dependence increases with latitude. Keywords. Ionosphere (Plasma temperature and density; Ion chemistry and composition; Modeling and forecasting)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.