Abstract

The photo-dissociation dynamics of LiF is investigated with newly constructed accurate ab initio potential energy curves (PECs) using the time-dependent quantum wave packet method. The oscillations and decay of the wave packet on the adiabats as a function of time are given, which can be compared with the femtosecond transition-state (FTS) spectroscopy. The photo-absorption spectra and the kinetic-energy distribution of the dissociation fragments, which can exhibit the vibration-level structure and the dispersion of the wave packet, respectively, are also obtained. The investigation shows a blue shift of the band center for the photo-absorption spectrum and multiple peaks in the kinetic-energy spectrum with increasing laser intensity, which can be attributed to external field effects. By analyzing the oscillations of the wave packet evolving on the upper adiabat, an approximate inversion scheme is devised to roughly deduce its shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.