Abstract

Methylene blue, a prevalent cationic type dye, has been extensively utilized in textile industry. Lignin generates as a byproduct and its utilization is required to add a potential economic benefit of a biorefinery process. Lignin-derived porous biochar, as a promising adsorbent, was propitiously prepared by chemical modification with different oxidation number manganese compounds (KMnO4, MnSO4, and MnO2). The adsorption capacity of MnO2-loaded biochar to methylene blue dye was substantially higher relative to original biochar. The maximum adsorption capacity was 248.96 mg/g and removal rate was 99.73%, as compared to 234.65 mg/g and 94.0% for unmodified biochar. In comparison, the decolorization rate of the modified biochar exceeded 95%.Substantial results showed that methylene blue has a strong binding affinity with MnO2 modified biochar. Adsorption kinetics was described by a quasi-second order model and methylene blue adsorption isotherm was better fitted by Langmuir model. The research provides a promising way for the removal of methylene blue from wastewater through the manufacture of adsorbent from byproduct of biorefinery process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.