Abstract

Transition-metal-catalysed, redox-neutral dehydrosilylation of alkenes is a long-standing challenge in organic synthesis, with current methods suffering from low selectivity and narrow scope. In this study, we report a general and simple method for the manganese-catalysed dehydrosilylation and hydrosilylation of alkenes, with Mn2(CO)10 as a catalyst precursor, by using a ligand-tuned metalloradical reactivity strategy. This enables versatility and controllable selectivity with a 1:1 ratio of alkenes and silanes, and the synthetic robustness and practicality of this method are demonstrated using complex alkenes and light olefins. The selectivity of the reaction has been studied using density functional theory calculations, showing the use of an iPrPNP ligand to favour dehydrosilylation, while a JackiePhos ligand favours hydrosilylation. The reaction is redox-neutral and atom-economical, exhibits a broad substrate scope and excellent functional group tolerance, and is suitable for various synthetic applications on a gram scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.