Abstract

A novel two-phase partitioning bioreactor (TPPB) modified by polysulfone (PSF) microspheres and immobilized enzyme (novozym-435) was formed, and the resulting TPPB was applied into mandelic acid chiral separation. The PSF microspheres containing n-hexanol (named PSF/hexanol microspheres) was prepared by using the phase inversion method, which was used as the organic phase. Meanwhile, the immobilized enzyme novozym-435 was used as a biocatalyst. The water phase was composed of the phosphate buffer solution(PBS). (R, S)-Methyl mandelate was selected as the substrate to study enzymatic properties. Different reaction factors have been researched, such as pH, reaction time, temperature and the quantity of biocatalyst and PSF/hexanol microspheres added in. Finally, (S)-mandelic acid was obtained with an 80% optical purity after 24h in the two-phase partitioning bioreactor. The enantiomeric excess (eep) values were very low in the water phase, in which the highest eep value was only 46%. The eep of the two-phase partitioning bioreactor had been enhanced more obviously than that catalyzed in the water phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.