Abstract

In hierarchical classification, the output labels reside on a tree- or directed acyclic graph (DAG)-structured hierarchy. On testing, the prediction paths of a given test example may be required to end at leaf nodes of the label hierarchy. This is called mandatory leaf node prediction (MLNP) and is particularly useful, when the leaf nodes have much stronger semantic meaning than the internal nodes. However, while there have been a lot of MLNP methods in hierarchical multiclass classification, performing MLNP in hierarchical multilabel classification is difficult. In this paper, we propose novel MLNP algorithms that consider the global label hierarchy structure. We show that the joint posterior probability over all the node labels can be efficiently maximized by dynamic programming for label trees, or greedy algorithm for label DAGs. In addition, both algorithms can be further extended for the minimization of the expected symmetric loss. Experiments are performed on real-world MLNP data sets with label trees and label DAGs. The proposed method consistently outperforms other hierarchical and flat multilabel classification methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.