Abstract
Reduction of nitrogen loss in animal production requires whole-farm management. Reduced loss from one farm component is easily negated in another if all components are not equally well managed. Animal excretion of manure N can be decreased by improving the balance of protein or amino acids fed to that required by individual animals or animal groups or by improving production efficiency. Management to increase milk, meat, or egg production normally improves efficiency by reducing the maintenance protein required per unit of production. Large losses of manure nitrogen occur through the ammonia and nitrous oxide that are emitted into the atmosphere and the nitrate leached into groundwater. Up to half of the excreted nitrogen is lost from the housing facility, but this loss can be decreased through frequent manure removal and by avoiding deep litter systems and feedlots. Techniques such as acid treatment of manure, scrubbing of ventilation air, and floor designs for separating feces and urine substantially reduce ammonia emissions, but these practices are often impractical or uneconomical for general use. Manure storage units improve nutrient utilization by allowing better timing of nutrient application with crop needs. At least 70% of the nitrogen entering anaerobic lagoons is typically lost, but a less than 10% loss can be maintained using slurry storage with a natural crust or other cover, or by drying poultry manure to at least 50% dry matter. Irrigation and surface spreading of manure without soil incorporation often ensures the loss of all remaining nonorganic nitrogen (typically, 20 to 40% of remaining nitrogen). Rapid incorporation and shallow injection methods decrease this loss by at least 50%, and deep injection into the soil essentially eliminates this loss. For grazing animals, excessive loss can be avoided by not overstocking pastures and avoiding late fall and winter grazing. Reducing emissions between the animal and the soil can lead to greater leaching and denitrification losses from the soil if this additional nitrogen is not used properly. The use of a crop rotation that efficiently absorbs these nutrients and applying nitrogen near the time it is needed by crops reduce the potential for further loss. Maintaining the proper number of animals per unit of land available for manure application is always crucial for efficient recycling of nitrogen. Our understanding of nitrogen loss processes is improved through modeling, and computer models assist in the development of integrated systems for efficient and economical nitrogen use in animal production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.