Abstract

In acute experiments with fibroelastic tubes such as blood vessels there is a linear Δ P:Δ V relationship followed by a steeper Δ P:Δ V relationship for further increments of volume. Endoneurial fluid pressure (EEP) of peripheral nerve also increases with increases in endoneurial fluid volume. We monitored the effects of volume changes on ΔEFP during a protracted period of time (6 weeks to 1 year on 16 control and 16 experimental rats) to study if a similar relationship occurred in nerve. Nerves were rendered edematous using parenteral and oral galactose administration, EFP was monitored using an active servonull system, and endoneurial volume and subperineurial area (SPA) was measured on fixed tissue. Marked endoneurial edema was produced but EFP did not exceed 6 mm Hg at any time. There was a linear Δ P:Δ V relationship for a limited range of volumes followed by a reduced Δ P:Δ V slope. Because these changes evolved over a long time course we examined the response of ΔEFP ΔSPA as a function of time. There was an exponential reduction with time, thus underlying the importance of time-dependent processes in the production of a reduced Δ P:Δ V slope. We conclude that neuropathic changes are unlikely to be due to ischemia by compression of capillaries. Instead, in edematous states there is a very low shear modulus (i.e., a small ΔEFP produces a major volume change with time) and certain types of deformations appear very likely to cause demyelination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.