Abstract

The GPI (glycosylphosphatidylinositol) moiety is attached to newly synthesized proteins in the lumen of the ER (endoplasmic reticulum). The modified proteins are then directed to the PM (plasma membrane). Less well understood is how nascent mammalian GPI-anchored proteins are targeted from the ER to the PM. In the present study, we investigated mechanisms underlying membrane trafficking of the GPI-anchored proteins, focusing on the early secretory pathway. We first established a cell line that stably expresses inducible temperature-sensitive GPI-fused proteins as a reporter and examined roles of transport-vesicle constituents called p24 proteins in the traffic of the GPI-anchored proteins. We selectively suppressed one of the p24 proteins, namely p23, employing RNAi (RNA interference) techniques. The suppression resulted in pronounced delays of PM expression of the GPI-fused reporter proteins. Furthermore, maturation of DAF (decay-accelerating factor), one of the GPI-anchored proteins in mammals, was slowed by the suppression of p23, indicating delayed trafficking of DAF from the ER to the Golgi. Trafficking of non-GPI-linked cargo proteins was barely affected by p23 knockdown. This is the first to demonstrate direct evidence for the transport of mammalian GPI-anchored proteins being mediated by p24 proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.