Abstract

Heterocyclic aromatic amines are bacterial mutagens which also induce DNA damage in mammalian cells. Damage has been demonstrated using a number of endpoints, including gene mutation, chromosome aberrations, sister-chromatid exchange, DNA-strand breaks, DNA repair and oncogene activation. Although the responses in mammalian cells are weak when compared to bacterial mutagenicity, heterocyclic aromatic amines are rodent carcinogens. Metabolic N-oxidation by cytochrome P450 is an initial activation step with subsequent transformation of the N-hydroxy metabolites to the ultimate mutagenic species by O-acetyltransferase or sulfotransferase. Major routes of detoxification include cytochrome P450-mediated ring oxidation followed by conjugation to glucuronic or sulfuric acid. Direct conjugation to the exocyclic amine group also occurs. Major reactions include N-glucuronidation and sulfamate formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.