Abstract

BackgroundAmbiguity in malignant transformation of glioma has made prognostic diagnosis very challenging. Tumor malignant transformation is closely correlated with specific alterations of the metabolic profile. Exploration of the underlying metabolic alterations in glioma cells of different malignant degree is therefore vital to develop metabolic biomarkers for prognosis monitoring.MethodsWe conducted 1H nuclear magnetic resonance (NMR)-based metabolic analysis on cell lines (CHG5, SHG44, U87, U118, U251) developed from gliomas of different malignant grades (WHO II and WHO IV). Several methods were applied to analyze the 1H-NMR spectral data of polar extracts of cell lines and to identify characteristic metabolites, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), fuzzy c-means clustering (FCM) analysis and orthogonal projection to latent structure with discriminant analysis (OPLS-DA). The expression analyses of glial fibrillary acidic protein (GFAP) and matrix metal proteinases (MMP-9) were used to assess malignant behaviors of cell lines. GeneGo pathway analysis was used to associate characteristic metabolites with malignant behavior protein markers GFAP and MMP-9.ResultsStable and distinct metabolic profiles of the five cell lines were obtained. The metabolic profiles of the low malignancy grade group (CHG5, SHG44) were clearly distinguished from those of the high malignancy grade group (U87, U118, U251). Seventeen characteristic metabolites were identified that could distinguish the metabolic profiles of the two groups, nine of which were mapped to processes related to GFAP and MMP-9. Furthermore, the results from both quantitative comparison and metabolic correlation analysis indicated that the significantly altered metabolites were primarily involved in perturbation of metabolic pathways of tricarboxylic acid (TCA) cycle anaplerotic flux, amino acid metabolism, anti-oxidant mechanism and choline metabolism, which could be correlated with the changes in the glioma cells’ malignant behaviors.ConclusionsOur results reveal the metabolic heterogeneity of glioma cell lines with different degrees of malignancy. The obtained metabolic profiles and characteristic metabolites are closely associated with the malignant features of glioma cells, which may lay the basis for both determining the molecular mechanisms underlying glioma malignant transformation and exploiting non-invasive biomarkers for prognosis monitoring.Electronic supplementary materialThe online version of this article (doi:10.1186/1476-4598-13-197) contains supplementary material, which is available to authorized users.

Highlights

  • Gliomas, which are the most aggressive type of brain tumors, show high morbidity, a high recurrence rate, and high mortality

  • The obtained metabolic profiles and characteristic metabolites are closely associated with the malignant features of glioma cells, which may lay the basis for both determining the molecular mechanisms underlying glioma malignant transformation and exploiting non-invasive biomarkers for prognosis monitoring

  • By the unsupervised and supervised analyses of 1H nuclear magnetic resonance (NMR) data for the five glioma cell lines, we found that the metabolic profiles of cell lines CHG5 and SHG44 (WHO II)were separated from those of U87,U118 and U251(WHO IV)

Read more

Summary

Introduction

Gliomas, which are the most aggressive type of brain tumors, show high morbidity, a high recurrence rate, and high mortality. Survival from gliomas depends on the tumor type and grades of malignancy [1]. WHO I–II gliomas can be treated with surgery and chemoradiotherapy, and are generally associated with a survival time of 5 to 10 years. Malignant transformation of a glioma is a very complex process, which is associated with poor prognosis and reduced survival times. Exploration of the underlying metabolic alterations in glioma cells of different malignant degree is vital to develop metabolic biomarkers for prognosis monitoring. Methods: We conducted 1H nuclear magnetic resonance (NMR)-based metabolic analysis on cell lines (CHG5, SHG44, U87, U118, U251) developed from gliomas of different malignant grades (WHO II and WHO IV). GeneGo pathway analysis was used to associate characteristic metabolites with malignant behavior protein markers GFAP and MMP-9

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.