Abstract

Gate-level characterization (GLC) is the process of quantifying physical and manifestational properties for each gate of an integrated circuit (IC). It is a key step in many IC applications that target cryptography, security, digital rights management, low power, and yield optimization. However, GLC is a challenging task due to the size and structure of modern circuits and insufficient controllability of a subset of gates in the circuit. We have developed a new approach for GLC that employs thermal conditioning to calculate the scaling factors of all the gates by solving a system of linear equations using linear programming (LP). Therefore, the procedure captures the complete impact of process variation (PV). In order to resolve the correlations in the system of linear equations, we expose different gates to different temperatures and thus change their corresponding linear coefficients in the linear equations. We further improve the accuracy of GLC by applying statistical methods in the LP formulation as well as the post-processing steps. In order to enable non-destructive hardware Trojan horse (HTH) detection, we generalize our generic GLC procedure by manipulating the constraint of each linear equation. Furthermore, we ensure the scalability of the approaches for GLC and HTH detection using iterative IC segmentation. We evaluate our approach on a set of ISCAS and ITC benchmarks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.