Abstract
The delineation of the prostate and organs-at-risk (OARs) is fundamental to prostate radiation treatment planning, but is currently labor-intensive and observer-dependent. We aimed to develop an automated computed tomography (CT)-based multi-organ (bladder, prostate, rectum, left and right femoral heads (RFHs)) segmentation method for prostate radiation therapy treatment planning. The proposed method uses synthetic MRIs (sMRIs) to offer superior soft-tissue information for male pelvic CT images. Cycle-consistent adversarial networks (CycleGAN) were used to generate CT-based sMRIs. Dual pyramid networks (DPNs) extracted features from both CTs and sMRIs. A deep attention strategy was integrated into the DPNs to select the most relevant features from both CTs and sMRIs to identify organ boundaries. The CT-based sMRI generated from our previously trained CycleGAN and its corresponding CT images were inputted to the proposed DPNs to provide complementary information for pelvic multi-organ segmentation. The proposed method was trained and evaluated using datasets from 140 patients with prostate cancer, and were then compared against state-of-art methods. The Dice similarity coefficients and mean surface distances between our results and ground truth were 0.95 ± 0.05, 1.16 ± 0.70 mm; 0.88 ± 0.08, 1.64 ± 1.26 mm; 0.90 ± 0.04, 1.27 ± 0.48 mm; 0.95 ± 0.04, 1.08 ± 1.29 mm; and 0.95 ± 0.04, 1.11 ± 1.49 mm for bladder, prostate, rectum, left and RFHs, respectively. Mean center of mass distances was within 3 mm for all organs. Our results performed significantly better than those of competing methods in most evaluation metrics. We demonstrated the feasibility of sMRI-aided DPNs for multi-organ segmentation on pelvic CT images, and its superiority over other networks. The proposed method could be used in routine prostate cancer radiotherapy treatment planning to rapidly segment the prostate and standard OARs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.