Abstract

NADH shuttles, including malate-aspartate shuttle (MAS) and glycerol-3-phosphate shuttle, can shuttle the reducing equivalents of cytosolic NADH into mitochondria. It is widely accepted that the major function of NADH shuttles is to increase mitochondrial energy production. Our study tested the hypothesis that the novel major function of NADH shuttles in cancer cells is to maintain glycolysis by decreasing cytosolic NADH/NAD+ ratios. We found that AOAA, a widely used MAS inhibitor, led to decreased intracellular ATP levels, altered cell cycle and increased apoptosis and necrosis of C6 glioma cells, without affecting the survival of primary astrocyte cultures. AOAA also decreased the glycolytic rate and the levels of extracellular lactate and pyruvate, without affecting the mitochondrial membrane potential of C6 cells. Moreover, the toxic effects of AOAA were completely prevented by pyruvate treatment. Collectively, our study has suggested that AOAA may be used to selectively decrease glioma cell survival, and the major function of MAS in cancer cells may be profoundly different from its major function in normal cells: The major function of MAS in cancer cells is to maintain glycolysis, instead of increasing mitochondrial energy metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.