Abstract
This paper is about classifying blood smear images into malaria cell and uninfected cell. In this research, we have used two datasets which contains microscopic blood smear images and through deep learning techniques such as CNN, LeNet, ResNet we have created a model that can classify these images. We have applied these techniques individually on both datasets and on the combined data as well and have shown that when we gave different type of blood smear images to the deep learning model even in that scenario, model is able to identify patterns and learn features with an accuracy up to 94%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.