Abstract

Subambient thermal decomposition of ruthenium tetroxide from nonaqueous solution onto porous SiO(2) substrates creates 2-3 nm thick coatings of RuO(2) that cover the convex silica walls comprising the open, porous structure. The physical properties of the resultant self-wired nanoscale ruthenia significantly differ depending on the nature of the porous support. Previously reported RuO(2)-modified SiO(2) aerogels display electron conductivity of 5 x 10(-4) S cm(-1) (as normalized to the geometric factor of the insulating substrate, not the conducting ruthenia phase), whereas RuO(2)-modified silica filter paper at approximately 5 wt % RuO(2) exhibits approximately 0.5 S cm(-1). Electron conduction through the ruthenia phase as examined from -160 to 260 degrees C requires minimal activation energy, only 8 meV, from 20 to 260 degrees C. The RuO(2)(SiO(2)) fiber membranes are electrically addressable, capable of supporting fast electron-transfer reactions, express an electrochemical surface area of approximately 90 m(2) g(-1) RuO(2), and exhibit energy storage in which 90% of the total electron-proton charge is stored at the outer surface of the ruthenia phase. The electrochemical capacitive response indicates that the nanocrystalline RuO(2) coating can be considered to be a single-unit-thick layer of the conductive oxide, as physically stabilized by the supporting silica fiber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.