Abstract

Exact solutions and corresponding normalized eigenfunctions of the Dirac equation are studied for the Makarov potential by using the Laplace transform approach under the pseudospin symmetry. By using the ideas of SUSY and shape invariance, we obtain the energy eigenvalues equation. The wave functions of the angle part are obtained by using the Nikiforov–Uvarov method, too. Finally, we also discuss the special cases of this potential and the valence energy states can be produced from our solution for the hole state by taking appropriate transformation of parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.