Abstract

Majorana fermions, exotic particles with potential applications in quantum computing, have garnered significant interest in condensed matter physics. The Kitaev model serves as a fundamental framework for investigating the emergence of Majorana fermions in one-dimensional systems. We explore the intriguing question of whether Majorana fermions can arise in a normal metal (NM) side-coupled to a Kitaev chain (KC) in the topologically trivial phase. Our findings reveal affirmative evidence, further demonstrating that the KC, when in the topological phase, can induce additional Majorana fermions in the neighboring NM region. Through extensive parameter analysis, we uncover the potential for zero, one, or two pairs of Majorana fermions in a KC side-coupled to an NM. Additionally, we investigate the impact of magnetic flux on the system and calculate the winding number -a topological invariant used to characterize topological phases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.