Abstract

Radiotherapy (RT)-induced DNA damage leaked into cytosol can elicit host antitumor immune response. However, such response rate is unpromising due to limited cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA, which could be digested inherently by host DNases. Here we show that synchronizing Mn2+ delivery with accumulated cytosolic DNA after RT can promote the activation of cGAS-STING pathway, thereby enhancing RT-induced antitumor immunity. Intratumoral Mn2+ injection immediately after RT cannot enhance RT, while intratumoral Mn2+ injection 24 h after RT can. Direct-injected Mn2+ can be metabolized out from tumor in minutes while RT-induced DNA damage need cells mitotic progression for up to 24 h to accumulate into cytosol. Alginate can maintain Mn2+ in tumor for up to 24 h due to it can chelate divalent cations. When the release profile of Mn2+ is controlled by alginate (Alg) and synchronized with the accumulation of RT-induced DNA damage, over 90% inhibition rate can be obtained even in the unirradiated tumor, and survival time is significantly extended. This synchronizing strategy provides a simple and novel approach to effectively activate cGAS-STING pathway in tumor and promote RT-induced immunity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.