Abstract

We present numerical evidence for the crystallization of magnons below the saturation field at nonzero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or, equivalently, flatband multimagnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally. The emergence of a finite-temperature continuous transition to a magnon crystal is expected to be generic for spin models in dimension D>1 where flatband multimagnon ground states break translational symmetry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.