Abstract

Magneli phases of titanium dioxide (such as Ti4O7, Ti5O9, etc.) provide electronic properties, namely a stable metallic behavior at room temperature. In this manuscript, we demonstrate that nanoscopic Magneli phases, formed intrinsically in anatase during a thermal aerosol synthesis, can enable significant photocatalytic H2 generation. This without the use of any extrinsic co-catalyst in anatase. Under optimized conditions, mixed phase particles of 30 percent anatase, 25 percent Ti4O7 and 20 percent Ti5O9 are obtained that can provide, under solar light, direct photocatalytic H2 evolution at a rate of 145 micromol h-1 g-1. These anatase particles contain 5-10 nm size inter-grown phases of Ti4O7 and Ti5O9. Key is the metallic band of Ti4O7 that induces a particle internal charge separation and transfer cascade with suitable energetics and favorable dimensions that are highly effective for H2 generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.