Abstract

We have investigated the magnetoresistance of lithographically prepared single-layer graphene nanoribbons in pulsed, perpendicular magnetic fields up to 60 T and performed corresponding transport simulations using a tight-binding model and several types of disorder. In experiment, at high carrier densities we observe Shubnikov-de Haas oscillations and the quantum Hall effect, while at low densities the oscillations disappear and an initially negative magnetoresistance becomes strongly positive at high magnetic fields. The strong resistance increase at very high fields and low carrier densities is tentatively ascribed to a field-induced insulating state in the bulk graphene leads. Comparing numerical results and experiment, we demonstrate that at least edge disorder and bulk short-range impurities are important in our samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.