Abstract

The island of Ischia (located in the Bay of Naples, Italy) represents a peculiar case of a well-exposed caldera that has experienced a large (>800 m) and rapid resurgence, accompanied by volcanic activity. What drives the resurgence of calderas is a crucial issue to investigate, because this process is associated with potential eruptions and high risk to people living within and around such large active volcanic systems. To improve the knowledge of volcano-tectonic processes affecting the caldera of Ischia, electromagnetic imaging of the structures associated with its resurgence was performed and integrated with available geological information. A magnetotelluric (MT) survey of the island was carried out along two main profiles through the central-western sector, providing an electrical resistivity map to a depth of 3 km. These resistivity cross sections allowed us to identify the presence of a very shallow magmatic intrusion, possibly a laccolith, at a depth of about 1 km, which was responsible for both the resurgence and the volcanic activity. Furthermore, the tectonic structures bordering the resurgent area and the occurrence of a large thermal anomaly in the western sector of the caldera also provided a signature in the resistivity cross sections, with the magma intrusion producing advection of hot fluids with high geothermal gradients (>150 °C km−1) in the southern and western sectors. All of these data are fundamental for the assessment of the island’s volcano-tectonic dynamics and their associated hazards. The structure and activity of the island have been controlled by the process of resurgence associated with the arrival of new magma and the progressive intrusion of a laccolith at a shallow depth. The reactivation of such a shallow system may imply imminent eruption which would pose a major volcanic hazard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.